
Tech Report 9
Calculating Predicted Altitude

We can use formulas to predict how high our 
rockets will fly. The formulas presented in this 
section are based on the work of Randy Culp. 
They are very similar to the equations 
developed by Len Fehskens in the 19060s, 
and independently by Doug Malewicki a short 
time after that. These equations are therefore 
named the “Fehskens-Malewicki equations.” 
We have found these to be simple enough for 
the average person to use, while still being 
accurate enough to be valuable to the 
average rocketeer (the results are typically 
accurate to within 10% for most model rocket 
flight profiles). You can find Randy’s web site 
“RocketMime” at http://www.rocketmime.com. 
It is filled with a wealth of information. 

There are three primary formulas that we are 
going to use for altitude prediction in model 
rockets:
• The maximum velocity at burnout

• The altitude reached at burnout

• Additional altitude attained during the coast 
phase, prior to ejection

When all our calculations are completed, we 
simply add the results of altitude reached at 
burnout with the altitude obtained during the 
coasting phase to obtain our final altitude

Predicted Altitude = yb + yc

Maximum Velocity at Burnout
We begin by calculating the velocity at 
burnout. If you look at the equation, there are 
several variables listed, including the 
variables “q”, “x”, “t”, and the special variable 
“e”.  We have to break down the formula into 
smaller sections that will provide the numbers 
for these variables.

To determine the variable q we use the 
following equation:

The variables “T” (thrust), “m” (mass), and 
“g” (gravity) we can obtain through the 
manufacture or by directly measuring them 
ourselves (and we will review them below). 
However, the variable “k” has its own formula 
that we must solve first, before we can will 
work through the rest of the formula for “q”.

Calculating the Coefficient “k”
The coefficient k is used to determine the 
wind resistance on the rocket. To do this we 
need to look at air density, drag and the cross 
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section area of the rocket. The formula to 
calculate k is:

k = ½ ρCdA

These variables are defined as follows:
• ρ (the symbol “rho”) 

This is equal to the density of air. Air density 
can change with changes in temperature, 
humidity and altitud. For model rockets, we 
can use a standard value of 1.225 kg/m3. 
This is the value of dry air at 150 C (590 F) 
at sea level. This can be changed based on 
current weather conditions and location.

• Cd 
This is the coefficient of drag. The amount 
of drag on a model rocket can change 
based on the design of the frontal area of 
the model, the total amount of area, the 
smoothness of the finish, etc. There are 
some very good reports on drag and how it 
affects vehicles as they move through the 
air. For now we can use 0.75 as a good 
estimation for our model rockets.

• A 
This is the frontal area of the rocket. As our 
average rocket is a cylinder, we can use the 
common equation for determining the area 
of a circle; A = π x r2 or pi time the radius 
squared. The calculations should be in 
conducted in meters

As we work through the calculations we will 
use the Estes Goblin as an example. At the 
top of the column on the right is the catalog 
information for the model. From the 
information in the Estes catalog we can 
calculate the coefficient k. 

The catalog provides the following 
information:
• Length = 36.6 cm 

Length = 36.6 / 100 = 0.366 meters
• Diameter = 34 mm 

Diameter = 34 / 1000 = 0.034 meters

The calculations show the conversion from 
centimeters and millimeter measurements 
into meters. We can now use these numbers 
in the formula to find the result for k. 

• First we will will calculate the frontal area of 
the rocket. The radius would be half the 
diameter, which in this case 0.017m. 

A = π x r2  
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A =  3.141592  x  0.0172   
A =  3.141592  x  0.000289  
A =  0.000907920

• We can now plug in the front area to the rest 
of the equation
k = ½ ρCdA 
k = ½(1.2250) x 0.75 x  0.000907920  
k =  0.6125 x 0.75 x  0.000907920 
k = 0.000417075

Calculating the Coefficient “q” 
(Terminal Velocity)
Now that we have calculated “k” we can move 
to the next step which is to determine “q”. The 
variable q provides you with the terminal 
velocity of the rocket. While a single stage 
model rocket doesn’t have to worry about 
reaching terminal velocity, some of the 
multistage rockets will come very close.

Calculate q using the following equation:

To calculate the coefficient q we use the 
following variables:

• T = average motor thrust in Newtons
T is the thrust of the motor in Newtons. This 
can be found in the documentation on the 
rocket motor that is used.

• m = mass of the rocket in kilograms
The mass of the rocket will change over 
time, due to the burning of the propellant. As 
the propellant burns, the rocket will begin to 
get lighter. This must be taken into account 
with our calculations. During the 
calculations for velocity we will use the 
mass of the empty rocket (mr) plus the mass 

of the motor (me), then subtract half the 
mass of the propellant (mp). The formula is 
as follows:

mr + me - (mp / 2)

We will also use the same mass figure when 
calculating the altitude during boost. 

If you have already built the rocket, you can 
weigh the model to determine the actual 
weight. If you are building from scratch, you 
can add the weight of the individual 
components to determine the expected 
weight of the rocket. The weight of the 
motor and the propellant can be found in 
the documentation that comes with the 
motor you intend you use.

• g = acceleration of gravity = 9.81 m/s2

This is a constant 9.80665 m/s2 here on the 
earth, and is derived from Newton’s law of 
universal gravitation. The acceleration of 
gravity on other planets is different. For 
example, the force of gravity on the moon is 
1.625 m/s2, on Mars it is 3.711 m/s2 while on 
Jupiter it is a massive 24.79 m/s2. 

• k = wind resistance and we calculated that 
in the previous section.

Continuing to use the Estes Goblin as an 
example, we can calculate the coefficient q 
using the information in the chart and catalog 
specs. 

The mass of the Goblin is 70.9 grams
mr = 70.9g 
mr = 70.9 / 1000 
mr = 0.0709 kg 

If we plan to fly it on a D12-3 motor the   
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We can now plug in the numbers into the 
formula to find the result for q.
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motor markings and the catalog (see Motor 
Performance Chart at the top of this page) 
identifies the average thrust in Newtons (The 
"12" in the D12-3). We also need to determine 
the mass of the motor and propellant. The 
motor chart on the D12-3 gives us the 
specifications on motor mass:

me = 44.5g 
me = 44.5 / 1000 
me = 0.0445 kg 

And the data on the propellant mass:
mp = 24.2g 
mp = 24.2 / 1000 
mp = 0.0242 kg

We can now determine the average mass of 
the rocket during boost

m = mr + me – (mp / 2) 
m = 0.0709 + 0.0445 – (0.0242 / 2) 
m = 0.0709 + 0.0445 – 0.0121 
m = 0.1033
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Calculating “x”
The variable “x”, like the variables “q” and “k”, 
we have seen thus far, has its own formula 
that we must work through. It is:

The variables in this equation have been 
calculated above. We can plug in our results 
from the earlier calculations to determine the 
value of x.

Calculating “t”
The variable “t” is the burn time of the motor. 
To determine this we divide the impulse by 
the thrust. This information can be found in 
the information on the motor package. Using 
our Goblin with the D12-3 motor we can 
calculate the burn time.

The Universal Constant “e”
In the velocity formula, we see the use of the 
variable “e” raised to the -xt power. In this 
formula the variable “e” is the universal 
constant “e” (sometimes called Euler's 
number or the exponential growth constant). It 
is similar to the constant π (pi) that we used 
earlier. The universal constant e is 
approximately equal to 2.718281828. In our 
formula for velocity at burnout we see the 
expression 1 – e -xt   which means that we 
raise the number e to the -xt power, then 
subtract that from 1. To solve this part of the 
equation we multiply -x times t, then raise e to 
that power.

Calculating “v”
We are now at the point where we can 
calculate the velocity of our Goblin rocket at 
burnout when using a D12-3 engine. We have 
calculated all of the necessary variables and 
can place them into the formula.
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The results of our calculations show that our 
Goblin will be traveling at 129.46 meters per 
second, or 289.6 miles per hour (multiply 
meters per second by 2.237 to convert to 
miles per hour). We are now ready to 
calculate the altitude of our Goblin at burnout 
as well as at the end of the coasting period.

Calculating Altitude 
Reached at Burnout
With the velocity at burnout now calculated, 
as well as the rest of the variables in the 
formulas for both altitude calculations, we can 
begin to calculate the predicted altitude for 
our rocket. In this calculation remember to 
use the rocket mass calculation that includes 
the propellant.

In this next formula (in the box below), there 
is a new function “ln” which is “Natural 
Logarithm”. A natural logarithm “gives you the 
time needed to reach a certain level of 
growth.”

Based on this calculation, the rocket will climb 
125.2 meters during the boost phase. To 
convert meters to feet, multiple by 3.2808. 
which will give us an altitude of 410.76 feet.

As we move on to the next step we have 
already calculated the variable “v” (velocity at 
burnout). There are two additional variables 
we need to calculate next; qa and qb

Calculating "qa"
The variable qa uses the following formula:

We have seen these variables before. It is 
important to remember that when conducting 
these calculations that we use the mass of 
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the rocket (m) where the solid rocket motor 
has spent all off its fuel, and all that is left is 
an empty motor casing. To calculate qa:

Calculating "qb"
The variable qb uses the following formula:

This formula uses the same information as qa, 
but performs a different calculation. To 
calculate qb:

Calculating Coast Time
Now that we have the results for qa and qb, 
we can complete the calculation on coast 
time. Make sure that the result is in radians 
when using the arctangent ( tan-1 )

In our Goblin example, we had originally 
selected a D12-3 motor. Based on the coast 
time calculation, we should have probably 
selected either the D12-5 or D12-7 motor to 
get as close to apogee before ejection. The 
D12-5 would have fired the ejection charge 
just prior to apogee, while the D12-7 would 
have fired just after apogee when the rocket 
was starting its arc back down to earth.

Calculating Time 
From Launch to Apogee
We can now calculate the flight time from 
launch to apogee by adding the burn time ( t ) 
to the coast time ( ta )

Flight Time = t  +  ta  

Flight Time = 1.6667 + 5.79  

Flight Time = 7.4567 seconds
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Variations in the Real World
Our calculations indicate that a Goblin using a 
D12 motor should attain an altitude of just 
under 1200 feet. Yet if we look in the Estes 
catalog, they show a predicted altitude of 
1400 feet. Chances are if we were to build 
and fly a Goblin, we would not achieve the 
exact same results as either predicted 
altitude. Why the discrepancies? 

There are a number of things that can 
account for the difference of the two 
projections. Estes may be using a series of 
calculations that are different than the ones 
presented here or they may take different 
factors into account (such as drag and air 
density constants).

Another thing to remember is that our 
calculations are performed in a sterile 
environment, but our rockets fly in the real 
world. The real world is ever changing, and 
the same rocket flown with the same motor 3, 
4 or 5 times will have differences in every 
flight. Even something simple like a slightly 
rusty launch rod can have an effect on the 
overall performance of the rocket. 

Within the formulas presented here there are 
things that can cause the predicted altitude to 
be different from the actual altitude seen in 
the field. Lets look at some of these.

Air Density
The formulas presented here used a constant 
number for air density (ρ=1.2250 kg/m3, the 
value of dry air at 150 C (590 F) at sea level). 
Reality is that air density is constantly 
changing, depending on a number of factors. 
It decreases as altitude increases and it 
changes with variations in temperature and 
humidity. 

If you are flying your model in Denver, 
Colorado, you are already at 5280 feet (one 
mile) above sea level (Penrose, Colorado is 
the home of Estes and sits approximately 
5,300 feet above sea level). There you might 
find the air density to be 0.960 kg/m3, a 
significant amount lower than that at sea 
level. 

Temperature also plays a role. At 350 C     
(950 F), air density would be closer to    
1.1455 kg/m3, while a drop in temperature to 
-150 C (50 F) would find an air density around 
1.3673 kg/m3 at sea level. 

All of these variations can have an effect on 
the predicted altitude of the rocket. You can 
see how much of an effect by simply 
changing out various air density values and 
see how the predicted altitude changes.

Motor Thrust
Much like with air density we have used a 
constant value for motor thrust. In reality, the 
amount of thrust the motor develops varies 
throughout the flight. We can see a graphic 
representation of this in a thrust curve chart. 
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This chart shows the amount of thrust being 
developed by the motor through the entire 
burn time (the delay and ejection charge are 
typically not included in these charts as they 
do not effect the thrust being developed). A 
typical motor has a high peak spike thrust 
during the initial firing of the motor, then drops 
and levels off, and finally fades out as the last 
of the propellant is used up. The NAR thrust 
curve chart on the previous page shows the 
D12 used in our Goblin example.

When it comes to our calculations on 
predicted altitude it has been discovered that 
the use of a constant thrust figure compared 
to a variable thrust figure, there is little 
difference in the overall outcome. A much 
larger impact will occur by varying the total 
thrust of the motor you use as opposed to 
calculating the various changes in the motor’s 
thrust.

Motor Mass
As before, we used a constant to define motor 
mass during the boost phase. We calculated 
the mass of the motor with only half the 
amount of propellant for use in our 
calculations. Reality again shows that as 
more propellant is burned, the lighter the 
rocket will become. The motor is at its lightest 
during the coasting phase when all of the 
propellant is gone. 

With a model rocket, the mass issue is not as 
critical as with full scale rockets. The mass of 
propellant in a model rocket only accounts for 
10-40% of the overall mass of the rocket. This 
allows us to use the constant motor weight in 
our calculations with a very low error rate 
(around 1%). Compare this to SpaceX’s 
Falcon Heavy. The first stage has an empty 
mass of 25,600 kg but a propellant mass of 

395,700 kg. The second stage has an empty 
mass of 3,900 kg and a propellant mass of 
92,670 kg. Th result is a combined empty 
mass of 29,500kg, but a propellant mass of 
488,370 kg. The propellant mass is over 16 
times the empty mass of the rocket.

Wind Resistance
We also use a number of constants for wind 
resistance. The calculations assume a basic 
model construction of a single main body tube 
and some fins (which is why only the frontal 
area of the rocket is calculated). A model that 
has multiple body tubes, large fins that are 
nearly like wings, or other objects that are 
placed into the air stream can significantly 
increase the amount of drag on the rocket.

We used a Coefficient of Drag as a constant 
0.75. While drag can be increased as noted 
above, it can also be reduced. The use of a 
smooth, glass-like finish, a more aerodynamic 
nosecone, the use of elliptical fins, even the 
use of a boat-tail can all reduce drag. Such a 
a well constructed and finished model could 
have a Cd as low as 0.3. However, a model 
rocket that is poorly constructed, a rough 
surface finish, etc may have a Cd of 2.0 or 
more. 

Like the other constants we used throughout 
the formulas, the use of a constant Coefficient 
of Drag of 0.75 is a good compromise 
between accuracy and ease of use. 
Adjustments to the Cd may result in a more 
accurate projection.
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The formulas presented in this section are 
designed to provide a good baseline from 
which to work. As you become more 
interested in the various aspects of model 
rocket aerodynamics, additional research will 
show how you can obtain more accurate 
results. You can then begin to adjust the 
formulas to match your findings. 

Even without additional research, you can 
build and fly a model rocket and compare the 
results in the field with the results provided by 
these formulas. You can then try to adjust 
certain variables to see if you can obtain   
more accurate results from the formula. You 
can also see if these changes are consistent 
across a variety of rockets flown in the field.

Predicted Altitude 
for Multistage Rockets 
When we look at the predicted altitude 
calculations for a multistage rocket, we find 
that the majority of the formulas are going to 
be exactly the same as they were for the 
single stage rocket. There are, however, a 
couple of important differences.

• The calculation for the boost stage of flight 
is the same for first stage of a multistage 
rocket as it is for a single stage rocket.

• You have to calculate boost equations for 
each stage.

• The second and subsequent stages must 
incorporate the velocity at the end of the 
previous stage. We must include the end 
velocity of the first stage as the initial 
velocity for the second stage, and the end 
velocity of the second stage as the initial 
velocity of the third stage.

• We must calculate the terminal velocity for 
the rocket under thrust. With a multistage 
rocket it is possible that you may come 
close or reach terminal velocity during the 
boost stages.

You also need to add the altitude for each 
stage during its boost phase and the altitude 
for the coast stage in the last stage only. 
Remember the booster stage(s) do not coast 
but ignite as soon as the previous stage 
finishes.

Calculate the Booster Stage
The booster stage or first stage is calculated 
just like you would a single stage rocket. The 
only differences are you will not calculate 
coast time (as that occurs following the last 
stage of the flight) and your mass calculation 
must include the mass of all the booster 
stages. For a three stage rocket, the initial 
mass calculation would appear as follows:

m = mrocket + mthird motor + msecond motor + 
mfirst motor – (mfirst propellant/2)

Calculate for Each Stage
After you have calculated the first stage, 
some of the calculations will change slightly 
to account for the multiple stages. The 
formulas for “q”, “x” and “t” do not change, but 
they must be calculated for each stage based 
on new values.

Changing Rocket Mass
Once the first stage booster ceased firing, it 
ignites the second stage booster and the first 
stage drops away. We no longer need to 
calculate the first stage and can remove it 
from our equations. 
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Our formula for the mass of the rocket while 
the second stage is firing would appear as 
follows:

m = mrocket + mthird motor + msecond motor – 
(msecond propellant/2)

When you perform the calculations for each 
stage, you need to make sure you remove the 
weight from the previous stage that is no 
longer attached to the rocket.

Changing Rocket Velocity
The other change that you must take into 
account is the changing velocity of the rocket 
as each stage ignites, burns and drops off. To 
calculate these effects we use a new formula 
for each upper stage to calculate the value of 
“s”. That formula is as follows:

The variable vO is the velocity of the previous 
stage. We can now use this in our 
calculations for new velocity of the rocket as 
well as the altitude attained during the current 
stage burn. 

The new formula for velocity is:

This new calculation provides the velocity at 
the end of the burn. 

Calculate Additional Rocket Altitude
The formula to calculate the altitude for each 
stage is basically the same as before, except 
it now takes into account the changes in 
velocity as each stage completes it’s burn. 

You will also notice that the variable yb has 
become yn as there are multiple stages. So 
for a three stage rocket you will have to 
perform calculations for y1, y2 and y3. As 
before, vO refers to the velocity of the 
previous stage. 

The updated formula is as follows:

The altitude that you calculate with this 
formula is only for that stage of the burn. 
Therefore to determine the complete altitude 
you must calculate the altitude achieved for 
each stage burn as well as the coasting 
altitude. Once you have these individual 
altitudes, you add them together to determine 
the total altitude achieved.

Those with an eye for math will notice that if 
vO = 0, the equations are the same as for the 
single stage rocket.

The coasting calculations are the same as for 
the single stage rocket. It does not change.

Parachute Calculations
In this section we are going to perform two 
calculations on parachute performance: 

• Determining how large a parachute you will 
need for your rocket. 

• Determine the descent velocity of 
parachute.
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Calculating Parachute Size 
The first formula we will discuss is how to 
determine the proper size of the parachute 
needed for a rocket. The formula that we will 
use is:

Most of the variables used here are the same 
as in our altitude prediction calculations. 

• Cd = is the coefficient of drag. For our 
parachute we will use either 0.75 for 
parachutes made out of a flat piece of 
plastic sheet (as is common on most model 
rocket kits). You could also use 1.5 for a true 
round canopy parachute.

• D = diameter of the parachute in meters

• g = acceleration of gravity = 9.81 m/s2

• m = rocket mass in kilograms. Since we are 
calculating parachute size, the parachute 
has been deployed, any boosters have 
separated, and the main rockets motor has 
expelled all its propellant. Therefore you 
want to use the rocket mass that includes 
the empty rocket and empty motor casing, 
with no propellant.

• π = 3.1415926

• ρ = the density of air. We will continue to use 
a value of 1.2250 kg/m3,  the value of dry air 
at 150 C (590 F) at sea level.

• v = velocity. Here we want our rocket to land 
softly so we will start with a speed of 3 
meters per second.

We will continue to use our Goblin rocket and 
calculate what size parachute it will need.

To convert our answer in meters to inches 
(which is the way parachute sizes are listed in 
most rocket kits), will will multiple 0.52491 
meters by 39.370. This gives a result of 20.6 
inches. Since the Goblin comes with two 
streamers instead of a parachute, we could 
replace the streamers with a 21-inch 
parachute.

Calculating Parachute Descent Rate
Sometimes we have a rocket and a 
parachute, but we are not sure if it is large 
enough to slow the rocket down sufficiently 
for a safe landing. We could also be worried 
that the parachute is too big, causing the 
rocket to drift away from the flying field. Using 
a variation of the formula for parachute size 
above, we can calculate the descent rate of a 
rocket and it’s parachute. The formula we will 
use in this case is:
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All of the variables are the same as the 
formula above, except in this case we are 
calculating the descent velocity because we 
know the parachute diameter. 

Let’s go back to our Goblin rocket with its two 
streamers. It is a calm day and we are on a 
large field, so we decide we want to use a 
parachute instead. We have two different size 
parachutes in our range box; a 12-inch 
parachute and a 24-inch parachute. We can 
calculate the descent rate for both parachutes 
and see which one will best suit our needs.

Calculations for the 12-inch Parachute
First, convert inches into meters

12 / 39.370 =  0.30480

Now we can calculate the descent rate for our 
12-inch parachute.

This is nearly twice as fast as our target goal 
of 3 meters per second. Now let’s see how 
well the 24-inch parachute performs.

Calculations for the 24-inch Parachute
Once again, convert inches into meters
· 24 / 39.370 =  0.6096 

Next we calculate the descent rate.

The 24-inch parachute at 2.6 m/s is the 
closest to our goal of 3 m/s descent rate. The 
12-inch parachute, with a descent rate of 5.1 
m/s, doesn’t slow the rocket enough to 
prevent damage upon landing. We would 
have to keep an eye on our rocket when 
using the 24-inch parachute, as it would be 
more susceptible to drifting in a breeze, but 
the chance of inflicting damage upon landing 
is significantly reduced. 

Total Flight Time
With all of the calculations we have performed 
thus far we can now calculate the total flight 
time. The formula we will use is:

ttft = tb  +  tc  + td

The variables we are using are
ttft = Total flight time
tb = Boost time
tc = Coast time
td = Descent time

Earlier we calculated the boost time and the 
coast time. To calculate the descent time, we 
will use our calculated altitude and divide that 
by our calculated descent rate

td = predicted altitude / descent rate



If You Enjoy Rocketry, Consider Joining the NAR

If you enjoy model rocketry and projects such as the Arduino Launch Control System, then consider joining the 
National Association of Rocketry (NAR). The NAR is all about having fun and learning more with and about 
model rockets. It is the oldest and largest sport rocketry organization in the world. Since 1957, over 80,000 
serious sport rocket modelers have joined the NAR to take advantage of the fun and excitement of organized 
rocketry.

The NAR is your gateway to rocket launches, clubs, contests, and more. Members receive the bi­monthly 
magazine "Sport Rocketry" and the digital NAR Member Guidebook—a 290 page how­to book on all aspects 
of rocketry. Members are granted access to the “Member Resources” website which includes NAR technical 
reports, high­power certification, and more. Finally each member of the NAR is cover by $5 million rocket 
flight liability insurance.

For more information, visit their web site at https://www.nar.org/
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Calculate Descent Time
Using our Goblin example rocket, we had 
previously calculated an altitude of 363.1 
meters. If we use a 24-inch parachute, the 
descent rate is 2.6 m/s. We can place these 
numbers into the formula to calculate descent 
time:

td = predicted altitude / descent rate
td = 363.1 / 2.6  
td = 139.65 seconds

Calculate Total Flight Time
We now have all of the numbers we need to 
calculate total flight time:

ttft = tb  +  tc  + td  
ttft =  1.6667 + 5.79 + 139.65 
ttft = 147.1067 seconds.

If we divide this by 60, we can determine the 
flight time in minutes:

147 / 60 = 2.45 minutes or 
 = 2 minutes 27 seconds.
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